Разделение токов в этих контурах в режиме торможения происходит разделительным диодом VD3. ТЭД в этом режиме работает как генератор с параллельным возбуждением.
Сочетание последовательного и параллельного возбуждения ТЭД, работающего в режиме генератора, позволяет улучшить процесс торможения и уравнивать ток обмотки возбуждения и ток якоря. При высоких скоростях движения ток обмотки возбуждения меньше тока якоря и при этом в основном применяется параллельное возбуждение. При низких скоростях движения ток обмотки возбуждения плавно возрастает до значения, превышающего ток якоря, в этом диапазоне скоростей в основном применяется последовательное возбуждение. Соотношение продолжительности работы в режимах последовательного и параллельного возбуждения задается законом управления ТИР.
Принцип тиристорно-импульсного регулирования
В данной системе привода используется тиристорное регулирование напряжения на якоре двигателя. Сущность его заключается в периодическом открывании и закрывании ключевого элемента – тиристора на высокой частоте.
Ввиду необходимости получения широкого диапазона регулирования напряжения применяется сочетание частотной и широтной модуляции.
В начале регулирования, когда для выбора зазоров в механической передаче необходимо получить выходное напряжение более 5 В, реализуется минимальная длительность включения основного тиристора (tвкл = 200 мкс), частота коммутации при этом fком = 25…30 Гц (рисунок 8.1а).
При увеличении задания тока происходит увеличение частоты модуляции при неизменной (минимальной) продолжительности включения основного тиристора (рисунок 8.1б). В режиме fном = 400 Гц; tн = 200 мкс, среднее напряжение составляет не более 10% от входного.
При дальнейшем увеличении задания тока происходит широтная модуляция, то есть увеличивается длительность открытого состояния тиристора по отношению к неизменному периоду коммутации. При этом увеличивается среднее напряжение на якоре двигателя, происходит разгон привода (рисунок 8.1в). Максимальное напряжение в режиме широтной модуляции ограничивается временем коммутации, которое нельзя бесконечно уменьшать. Поэтому среднее выходное напряжение в этом случае составляет примерно 84% (рисунок 8.1г). Переход в этом режиме на полное открытие основного тиристора вызовет бросок тока и толчок привода.
При дальнейшем увеличении напряжения управления происходит снижение частоты модуляции с 400 Гц до 25‑30 Гц (рисунок 3.1 д). При этом среднее напряжение на выходе преобразователя составляет около 96% от напряжения контактной сети, и поэтому можно переходить на полное открытие тиристора без существенного броска тока.
При дальнейшем увеличении напряжения происходит снятие импульсов с коммутирующего тиристора и полное открытие ключевого элемента – к якорю двигателя прикладывается полное напряжение контактной сети (рисунок 8.1 е).
По данным таблицы 4.2 строим графики переходных процессов выбранной схемы (Рис. 4.1 – 4.8).
Статьи о транспорте:
Описание потока энергии
В начале энергия заключается в химической энергии дизельного топлива. Затем с помощью топливной системы, а именно: фильтров грубой и тонкой очистки, насоса высокого давления, трубопровода высокого и низкого давления. Топливо из бака попадает в цилиндр, где оно самовоспламеняется, преобразуя химиче ...
Определение расчётной влажности грунта
Основными параметрами механических свойств грунта земляного полотна являются, деформационные и прочностные характеристики: модуль упругости (Егр), коэффициент Пуассона (μгр), угол внутреннего трения (φгр), удельное сопротивление (сгр).
Расчётное значение влажности грунта определяется по ...
Определяем коэффициент технической готовности
где Lcc=210 км
Дор = (dто.тр)= 0,36 дней/1000 км
Дкр = (dкр) =22 дней
Lкр.ср= Lкр
A5– количество автомобилей прошедших КР = 80
А–общее количество автомобилей = 210
Lкр=270000 км
Lкр.ср= 270000 км
Определяем коэффициент использования автомобилей
где – расчетный коэффициент техническо ...